
Oracle RAC implementation on IBM Power Systems Virtual Server

Practical guide for deploying Oracle Real Application Cluster

Table of contents

Executive overview	2
Disclaimer	2
Introduction	3
Terminology	3
Key features	3
Hardware configuration of Power Systems Virtu	
System topology	5
Create networks for Oracle RAC public & private	traffic6
Create LPARs on Power Systems Virtual Server	8
Create shared storage for cluster	16
Validate network connectivity	20
Oracle RAC implementation	23
Conclusion	35
Appendix	35
Resources	37
About the authors	37

Overview

This paper provides steps for installing Oracle RAC 19c on two IBM Power Systems Virtual Server AIX V73 LPARs.

Executive overview

This paper outlines the steps required to deploy Oracle® Real Application Cluster (RAC) on the IBM® Power Systems Virtual Server infrastructure. IBM Power Systems Virtual Server is an IBM Power systems based enterprise Infrastructure as a Service (IaaS) offering that utilizes PowerVM™ servers, networking, and virtualization technology, and a SAN based storage. This is identical to what a customer could deploy as a certified Oracle stack on Power systems in their own data center. With this offering you can quickly create and deploy one or more logical partitions (LPARs) that are running on either AIX®, IBM i or Linux operating system.

This paper details the configuring steps for Oracle RAC version 19c on Power Systems Virtual Server LPARs.

Disclaimer

The data presented in this paper is intended for education purposes only.

Introduction

Power Systems™ Virtual Server is a Power systems enterprise Infrastructure as a Service (IaaS) offering that enables quick creation and deployment of one or more LPARs running on AIX or other supported operating systems. After LPAR provisioning, it is your responsibility to ensure operating system and application security. IBM manages up to operating system (OS) deployment and the client self-manages the OS and applications deployed on those LPARs. Power Systems Virtual Server offers flexible LPAR resources adjustment (CPU, Memory, storage, and network) based on workload demands.

Existing AIX customers can use the Power Systems Virtual Server service for several workload scenarios, including disaster recovery, development environments, and partial IT infrastructure moves. Power Systems Virtual Server customers can scale their infrastructure and remain flexible with their workload management and capacity both on and off-premises. Since the infrastructure layer is identical, system administrators who run on-premises AIX, IBM i, and Linux on Power systems today can use the same tools, workflows, and enhancements in the Power Systems Virtual Server environment.

This article demonstrates LPAR creation, Oracle RAC installation, basic configuration techniques with the help of GUI screens, and the steps required to create or configure various resources like storage volumes, networks etc.

It is important to note that the reader is expected to have prior knowledge and familiarity with Power Systems Virtual Server, AIX, and Oracle RAC technologies.

Terminology

Workspace: A container that holds all Power Systems Virtual Server instances located in a specific geographic location or data center.

Power Systems Virtual Server instance: A logical partition created using PowerVM technology and running AIX, IBM i or Linux operating system. It is also referred to as Virtual Machine (VM).

In this paper we refer to AIX Logical Partitions as LPARs.

ASM: Oracle Automatic Storage Management, a system used to store Oracle database files.

Key features

The following are some of the key features of the Power Systems Virtual Server service.

Straightforward billing

The Power Systems Virtual Server service uses a monthly billing rate that includes the licenses for the AIX and IBM i operating systems. The monthly billing rate is pro-rated by the hour, based on the resources that are deployed to the Power Systems Virtual Server instance.

Refer to Pricing for Power Systems Virtual Servers on ibm.com for more information on pricing.

Hybrid cloud environment

The Power Systems Virtual Server service allows you to run any AIX workload off-premise from your existing Power Systems hardware infrastructure. Running workloads in Power Systems Virtual Servers, provides advantages such as self-service, fast delivery, elasticity, and low-latency connectivity to other

services. Although AIX workloads are running in Power Systems Virtual Servers, you can maintain the same scalable, resilient, production-ready features that Power Systems hardware provides.

Bring your own image

While IBM provides stock AIX and IBM i images to instantiate a LPAR, You can also bring your own custom AIX image that has been tested and deployed.

Refer to <u>Deploying a custom image within a Power Systems Virtual Server</u> on ibm.com for additional information.

Infrastructure customization

When creating a Power Systems Virtual Server, you can configure and customize the following options:

- Number of virtual server instances
- Number of cores and mode (dedicated, shared, capped or un-capped, shared processor pools)
- Amount of memory
- Data volume size and type
- Addition/Deletion of network interfaces

Hardware configuration of Power Systems Virtual Server

Power Systems Virtual Server service utilizes IBM Power systems S922 and E980 for hosting. The following are the hardware specifications:

- Compute
 - o Power System S922 (9009-22A)
 - o <u>Power System E980 (9080-M9S)</u>
- Storage
 - o Flash Storage, IBM FS9000 series devices
 - o IBM SAN48B (Brocade)
- Network
 - o Cisco Nexus9000 93180YC-EX (10G)
 - Cisco Nexus9000 C9348GC-FXP (1G)
 - o Cisco Nexus9000 93180YC-FX (Leaf 25G)
 - Avocent ACS

The Power Systems Virtual Servers data centers are currently hosted in various regions globally, with potential differences in hardware configuration across the regions, which may change over time.

For up-to-date information, refer to <u>hardware specification</u> from ibm.com.

System topology

Power Systems Virtual Server provides a simple and easy interface for creating shared storage and network resources required for Oracle RAC implementation. The implementation requires shared storage between the cluster nodes, and public and private networks for RAC communication between the nodes. Figure 1 shows the usage of three networks in this implementation. Net I is used as the Oracle RAC public interface, where users and application servers connect to access data from the RAC database. Net II and III are used for Oracle RAC private interconnects. The Oracle RAC public network interface runs the node virtual IPs (VIPs) and SCAN VIPs, and a domain name server (DNS) is required to resolve those IPs. The DNS server can be configured on a LPAR inside Power Systems Virtual Server, which can act as a jump host or bridge server and has a public network for communication with the outside world. Alternatively, a DNS server can also be hosted on-prem or in IBM Cloud x86 VM using direct link cloud connect offerings. For more information on direct link services, refer to Ordering Direct Link Connect for Power Systems Virtual Servers on ibm.com.

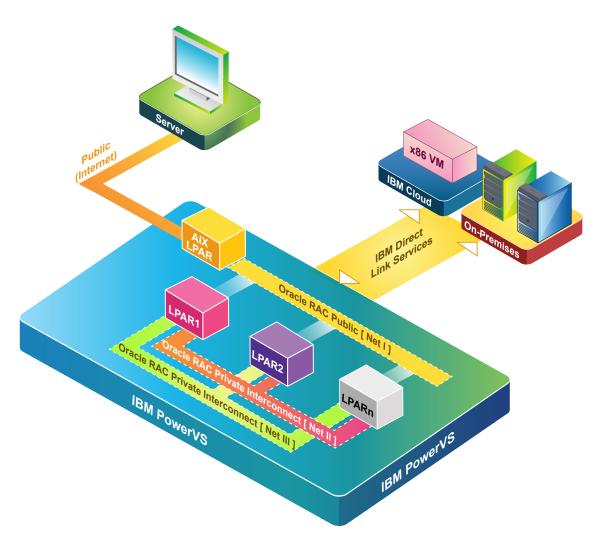


Figure 1. System/Network Topology.

The steps for setting up the Oracle RAC on Power Systems Virtual Server LPARs are as follows.

- 1) Create Networks for Oracle RAC.
- 2) Create AIX LPARs which act as Oracle RAC database nodes.
- 3) Create and attach local disks for Oracle software.
- 4) Create and attach shared disks for Oracle ASM disk groups.
- 5) Validate network connectivity (Create support ticket for network configuration if needed).
- 6) Perform Operating System (OS) prerequisite steps.
- 7) Install and configure the Oracle Grid software.

Create networks for Oracle RAC public & private traffic

Figure 1 shows that the public network provides access to the internet and should not be utilized as the Oracle RAC public network. For testing purposes only, Figure 2 shows that enabling the public network option allows access to the LPAR via public internet without the need for VPN or Direct Link service. However, a Direct Link service is required to connect the LPARs to on-premises networks and other resources, as demonstrated in Figure 1.

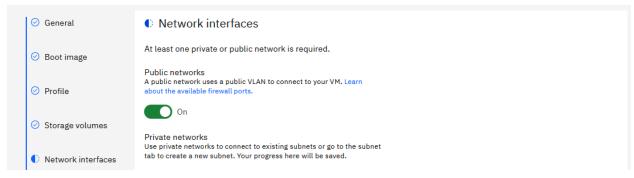


Figure 2: Enable the public network.

To create the required Oracle RAC Public and Private networks, Power Systems Virtual Server subnets are utilized. Our setup includes three networks, with one for the Oracle RAC public network where RAC VIPs will be configured, and the other two for the Oracle RAC cluster interconnect. Follow these steps to create the required networks:

1. Select your workspace under **Workspaces**, click **Subnets** on left pane and the click **Create subnet**.



Figure 3. Create new subnet.

2. Enter subnet name in the Name field and CIDR format in the CIDR field.

Ensure that the **IP ranges** for the subnet is within the ranges defined by <u>RFC 1918</u> (10.0.0.0/8, 172.16.0.0/12, or 192.168.0.0/16). The number after the slash represents the bit length of the subnet mask, with a smaller number after the slash indicating more IP addresses being allocated. For RAC private interconnect subnets, use a higher CIDR number to allocate fewer IP addresses to those subnets.

Do not include the IPs X.X.X.1 and X.X.X.255 in the IP ranges field as they are reserved.

The **cloud connection** field is optional.

Refer to <u>Configuring and adding a private network subnet</u> on ibm.com for additional details on subnet creation and CIDR notation.

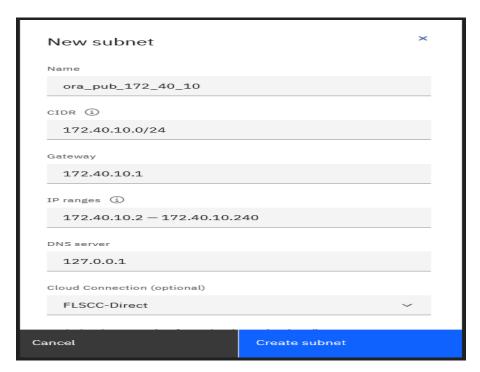


Figure 4. Creation of RAC Public subnet.

In our setup, the network 172.40.10.0 is designated as the Oracle RAC public network, and the IP range typically used is 172.40.10.2 to 172.40.10.254. However, to ensure that the Power Systems Virtual Server control plane does not use the IPs ranging from 172.40.10.241 to 172.40.10.254 for new LPARs, we have limited the IP range to 172.40.10.240 as depicted in Figure 4. For the Oracle RAC software to function properly, Virtual IPs (VIPs) are required for the cluster. In our 2-node cluster, we have reserved IPs from 172.40.10.241 to 172.40.10.254 for node VIPs and SCAN VIPs.

3. Create Oracle RAC private networks by specifying the **CIDR** field as 10.80.10.0/28, 10.90.10.0/28 as illustrated in Figure 5.

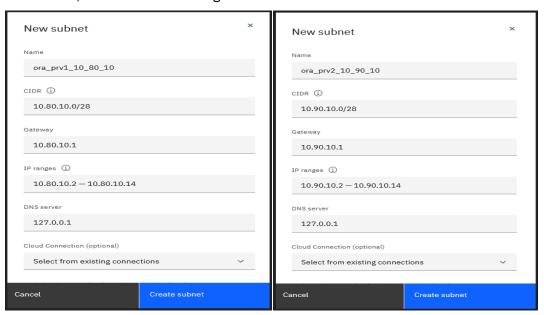


Figure 5. Creation of RAC Private subnets.

4. Select your workspace under **Workspaces**, click **Subnets** on left pane to view the final list of networks created and their characteristics.

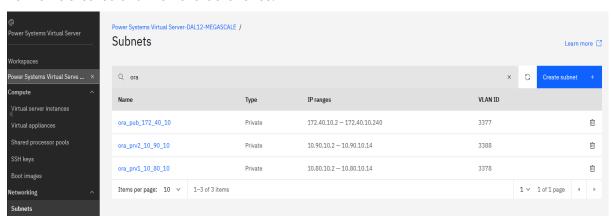


Figure 5a. Networks list.

Create LPARs on Power Systems Virtual Server

This section describes steps for creating new LPARs using the Power Systems Virtual Server offering.

Choose the workspace to work in from the dashboard and then create the required LPARs for Oracle RAC. A workspace acts as a container for all the resources in one data center/location. For this demo two LPARs are needed.

Refer to <u>Creating a Power Systems Virtual Server</u> on ibm.com for more details on creating a Power Systems Virtual Server Workspace and configuring Virtual server instance.

To create new LPARs using the Power Systems Virtual Server offering, follow these steps:

- 1. Select the "Workspace for Power Systems Virtual Server" resource in the Catalog and then select your workspace under Workspaces. Under the Compute header on the left pane then select Virtual server instances. Click on the "Create Instance" button to start the guided process. Start by specifying the name of the LPAR and number of instances you want to create.
- Enter the name of LPAR in Instance name field and choose the Number of instances. If you select more than one instance, the Add a shared processor pool check box will be disabled.
 Click appropriate Instance naming convention.

Select the appropriate policy (Same Server/Different Server) under the **placement group** colocation policy.

a) Same Server: Select this option when you want all LPARs on same host server.

Virtual Server / Power Systems Virtual Server-DAL12-MEGASCALE / Virtual server instances /

b) *Different Server*: To minimize the risk of an outage affecting all LPARs on a single physical server, choose the "Different server" option. This option ensures that each LPAR is hosted on a different physical server, providing an added layer of redundancy. For Oracle RAC deployments, it is strongly recommended to select this option. When selected, a new server placement group is created to ensure that all LPARs in the group are deployed onto different physical servers. If additional RAC nodes need to be added later, the same specific server placement group must be specified to ensure that all LPARs of the cluster are deployed on different physical servers.

Create virtual server instance General General Boot image Instance name oraprod O Profile Number of instances Storage volumes A maximum of 5 instances can be provisioned at once. Network interfaces A new placement group is created when deploying multiple instances
 The instance name provided will be used as the group name and cannot be edited. Placement group colocation policy Same server Different server Add to a shared processor pool (1) ared processor pools cannot be defined for multiple

Figure 6. Provide Virtual Machine details.

- 3. Select the appropriate pinning option (Hard/Soft/None) from the Virtual server pinning list.
 - a) Select the **Soft** or **None** option during planned maintenance activity requiring a physical server restart, to automatically migrate the LPAR to a different host using Live Partition Mobility (LPM) and to automatically migrate the LPAR back to the original host once the maintenance activity is completed.

b) Select the **Hard** pin option to restrict the movement of a LPAR to a different host and to prevent an outage during host maintenance. It is recommended to select Hard pin for LPARs running Oracle databases to control the use of licensed cores and to prevent LPM activity.

Choose an existing **SSH key** or create one via the SSH Keys menu to securely connect to your Power Systems Virtual Server from a given system and click **Continue**.

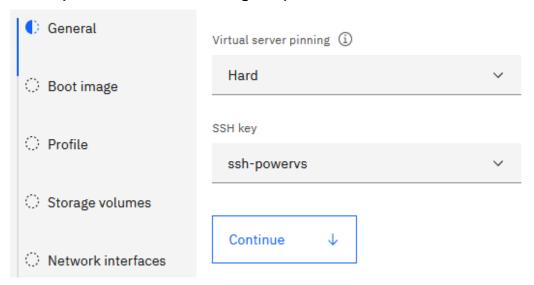


Figure 7. Select VM pinning and SSH Key.

4. Select the boot image for your LPAR in the Power Systems Virtual Server offering either from the pre-existing stock operating system images or upload your own custom image. When using a custom image, it is important to ensure that the AIX image technology level is supported on the Power Systems hardware selected in the "Machine Type" field. The AIX boot volume is created automatically during deployment, and it is recommended to choose the Tier 1 option for the boot LUN of the LPAR. If you choose a standard AIX image from the Power Systems Virtual Server catalog, a 25GB boot volume will be automatically created for AIX 7.3 images and a 20GB boot volume for AIX 7.2 images.

Refer to <u>Deploying a custom image within a Power Systems Virtual Server</u> on ibm.com for more information on custom image deployment.

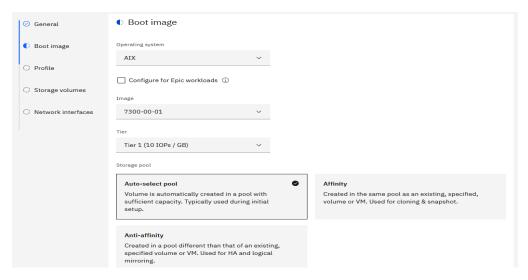


Figure 8. Select Operating System type.

Note: In this deployment, the option **Auto-select pool** was chosen. If you plan on adding more RAC nodes later, you need to choose the "Affinity" option for those LPARs and select the same storage pool that was used for the initial RAC deployment. The storage pool used can be found under the Storage volumes menu.

5. In the Profile section select Machine type and Core type.

There are three Core types available.

- a) **Dedicated**: resources are allocated for a specific client
- b) **Shared uncapped**: shared with other clients and can utilize additional unused compute capacity if available on the server, up to the hard limit of available virtual processors configured for the LPAR.

The number of virtual processors available in the LPAR can be determined in AIX with the "lparstat -i" command and be used to determine required Oracle core licenses.

c) **Shared capped**: shared, but compute resources do not expand beyond those that are specified.

For shared capped and uncapped modes the "Cores" value can be allocated in multiples of 0.25 of a core.

Note: Select the processor mode and number of cores based on your Oracle licensing terms.

Enter the number of cores and the amount of memory to be allocated to the LPAR.

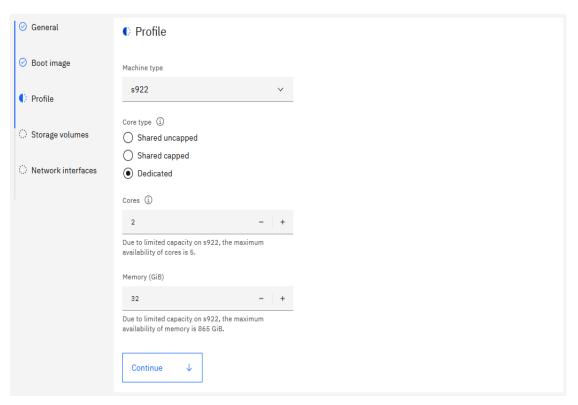


Figure 9. Provide partition profile details.

6. Retain the default values and click **Continue**.

Additional storage volumes can be attached during LPAR creation or can be added after an LPAR is deployed. During multiple LPARs creation we can only create and attach shareable storage volumes. In this demo we will attach the shared disks to the LPARs after the LPARs are deployed and therefore no additional storage volumes are specified here.

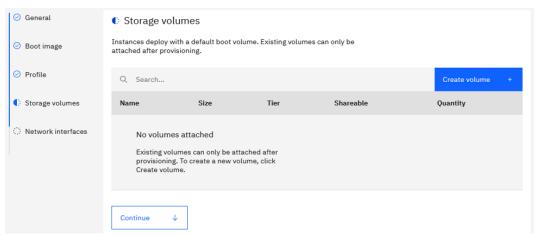


Figure 10: Storage section.

7. Select the private networks that were created earlier for Oracle RAC public and Oracle RAC private interconnect networks. Review the details, check the agreement terms, and click **Create**.

It is recommended to attach the Oracle RAC public subnet first, followed by the Oracle interconnect subnets. Any other non-RAC subnets should be added last.

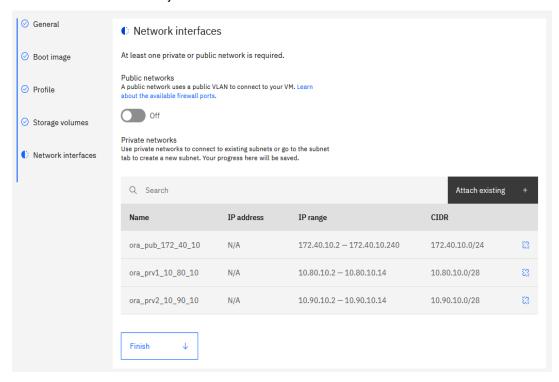


Figure 11. Select subnets.

5. Wait for the LPARs to get deployed, it may take few minutes. Refresh the page using **Refresh** button. On the Virtual server instances page notice that the Status is now **Active**, indicating successful deployment.

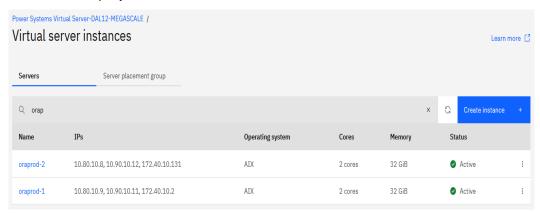


Figure 12. Power Systems Virtual Server LPARs for Oracle 2-node RAC.

6. Click the three dots icon corresponding to each LPAR, Select the **Open console** option to set the root user password to enable standard SSH access to the LPAR.

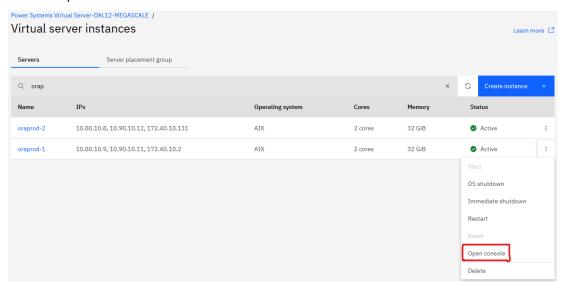


Figure 13. Opening LPAR console.

7. In the password prompt press <Enter>, then specify the login username *root*, then press <Enter> to continue with no password and then follow the prompt to set the password for the root user.

Note: Power Systems Virtual Server standard AIX builds do not have a predefined password.

Figure 14. Set the root password.

8. On the Virtual server Instances screen, click the LPAR name to modify or view the LPAR configuration after deployment.

For this demonstration LPAR 'oraprod-1' is selected.

You can dynamically change the LPAR configuration and take advantage of additional features like capturing and exporting LPAR image to Cloud Object Storage, which can also be used as a backup of the LPAR. You can provision a LPAR from a backup or use a customized image from your current non-cloud environment, resize/modify a LPAR, and add/remove storage volumes and networks. You can also specify virtual server pinning based on your business needs.

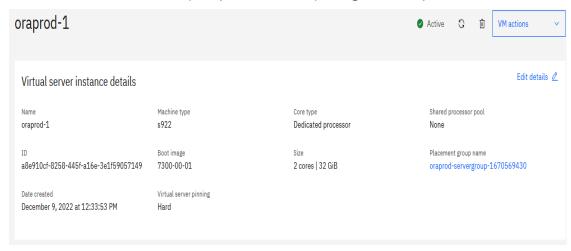


Figure 15. LPAR settings.

Create the storage volumes for the oracle software. Click oraprod-1→ Attached volumes→
 Create volume. Specify Shareable as Off and select Affinity option Virtual machine (boot volume)
 and oraprod-1.

For this demonstration we create two 90Glocal volumes and attached to the LPAR oraprod-1 as shown in Figure 16.

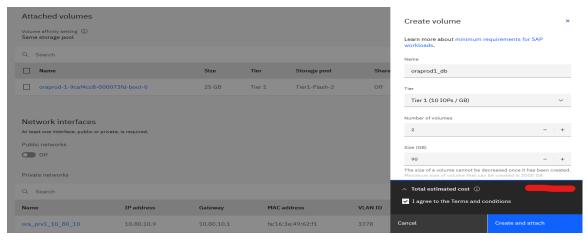


Figure 16. Create and attach local LUNs.

Storage volumes are now displayed under Attached volumes, indicating successful attachment of volumes.

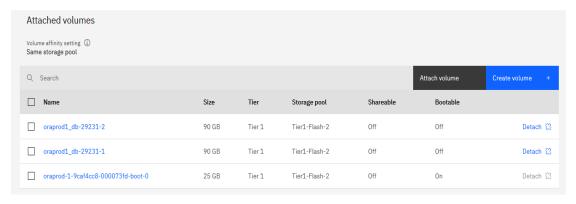


Figure 17. List of Local storage volumes.

10. Run the 'cfgmgr' command as root user to make the disks available at AIX level.

'hdisk1' and 'hdisk2' are the latest attached volumes of 90GB each.

# lspv			
hdisk0	00fa00d6b552f41b	rootvg	active
# cfgmgr			
# lspv			
hdisk0	00fa00d6b552f41b	rootvg	active
hdisk1	none	None	
hdisk2	none	None	

11. Repeat the previous steps to create and attach two new storage volumes to the second LPAR oraprod-2 for oracle software.

Refer to <u>Modifying a Power Systems Virtual Server instance</u> on ibm.com for more details on storage volumes.

The following section describes the process of creating a shared disks and attaching them to the newly created LPARs.

Create shared storage for cluster

Create shared storage volumes to store Oracle cluster registry (OCR), voting disks, data files, and redo log files for Oracle Real Application Cluster. The shared disks are created from fiber channel attached SAN storage that is consistent with an on-premises PowerVM setup. By default, for each volume (hdisk in AIX), multipath is configured from the LPAR to the storage volume. It is recommended to create storage volumes for RAC DB from the same storage tier and storage pool.

For this demo, we are using eight shareable disks: three 20GB disks for OCR and Vote, one 80GB disk for the MGMT ASM disk group, two 100GB disks for the DATA disk group, and two 50GB disks for the REDO disk group.

To create the shared volumes, follow these steps for each group of disks:

a) Open the Power Systems Virtual Server dashboard, click **Storage volumes** on the left pane and the click **Create volume**.

Enter the volume name and tier details. To make the volume shareable ensure that **Shareable** is set to **On**. Select the storage pool affinity option and make sure all the shared volumes are created from the same storage pool. For the Affinity object select *Virtual machine* (boot volume) and LPAR oraprod-1 as *Affinity VM*.

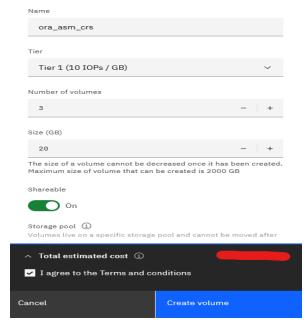


Figure 18. Shared Disk creation.

Figure 19 lists all the storage volumes created in the previous step.

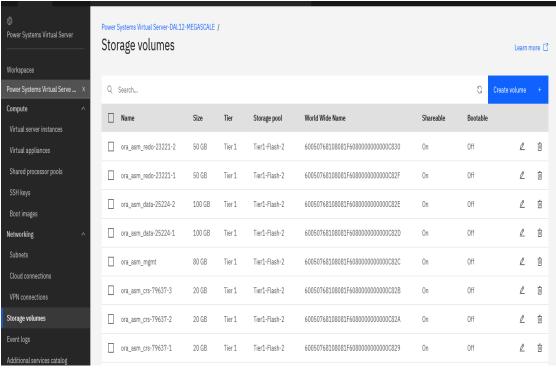


Figure 19. List of Shared Storage Volumes.

The following steps describes the process to attach a shared volume to newly created LPARs 'oraprod-1' and 'oraprod-2'.

b) Click on LPAR 'oraprod-1' and scroll down to *Attached volumes* then click *Attach volume*.

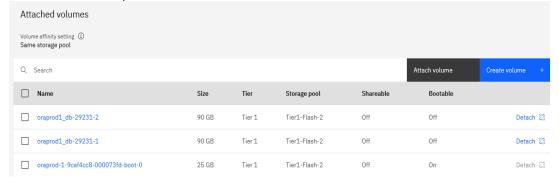


Figure 20. Attached volumes of oraprod-1 VM

c) Select all shared disks and then click **Attach volume**.

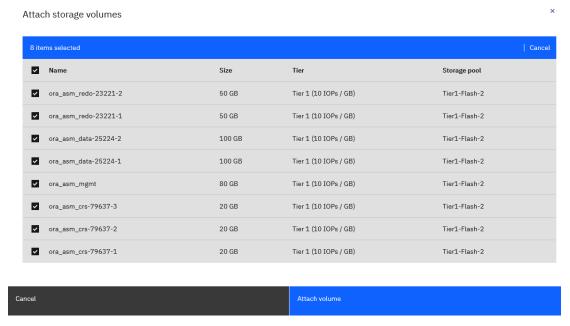


Figure 21. Select ASM Shared disks.

d) After the disks are attached to the LPAR, login to the LPAR and run 'cfgmgr' command to make the new volumes visible in AIX as hdisks.

# lspv hdisk0 hdisk1 hdisk2	00fa00d6b552f41b none none	rootvg None None	active
# cfgmgr			
# lspv hdisk0 hdisk1 hdisk2 hdisk3 hdisk4	00fa00d6b552f41b none none none none	rootvg None None None None	active

hdisk5	none	None
hdisk6	none	None
hdisk7	none	None
hdisk8	none	None
hdisk9	none	None
hdisk10	none	None

e) Repeat the previous steps for 'oraprod-2' LPAR.

Ensure that AIX disk names (hdiskX) for the same volume frequently are not matched for all nodes after the discovery with 'cfgmgr' command. For oracle RAC, ASM shared disks name should be same across all nodes of the RAC cluster. To correct the disk names use the 'rendev' command.

f) Use the 'Ismpio -q' command to view the hdisk details including 'Volume Name' across all RAC nodes allowing to match devices across LPARs.

Notice that the shared disks on both nodes ('oraprod-1' and 'oraprod-2') have different names. On 'oraprod-1', the CRS disks are identified as hdisk3, hdisk5, and hdisk10, while on 'oraprod-2', the CRS disks are identified as hdisk3, hdisk6, and hdisk10.

From node 'oraprod-1'

# lsmpio -q Device	Vendor Id	Product Id	Size	Volume Name
hdisk0	IBM	2145	25.00GiB	volume-oraprod-1-9caf4cc8-00007
hdisk1	IBM	2145	90.00GiB	volume-oraprod1 db-29231-1-b0ea
hdisk2	IBM	2145	90.00GiB	volume-oraprod1_db-29231-2-0688
hdisk3	IBM	2145	20.00GiB	<pre>volume-ora asm crs-79637-2-70e3>hdiskasmcrs2</pre>
hdisk4	IBM	2145	100.00GiB	volume-ora asm data-25224-2-a3e
hdisk5	IBM	2145	20.00GiB	volume-ora_asm_crs-79637-1-a953>hdiskasmcrs1
hdisk6	IBM	2145	50.00GiB	volume-ora_asm_redo-23221-2-188
hdisk7	IBM	2145	80.00GiB	volume-ora asm mgmt-5ae24f49-56
hdisk8	IBM	2145	50.00GiB	volume-ora asm redo-23221-1-624
hdisk9	IBM	2145	100.00GiB	volume-ora asm data-25224-1-9ac
hdisk10	IBM	2145	20.00GiB	volume-ora asm crs-79637-3-277a> hdiskasmcrs3

From node 'oraprod-2'

hdisk0 IBM 2145 25.00GiB volume-oraprod-2-d3c4b8d0-00007 hdisk1 IBM 2145 90.00GiB volume-oraprod2_db-26878-1-5455 hdisk2 IBM 2145 90.00GiB volume-oraprod2_db-26878-2-30f2 hdisk3 IBM 2145 20.00GiB volume-ora_asm_crs-79637-3-277a->hdiskasmcrs3 hdisk4 IBM 2145 50.00GiB volume-ora_asm_redo-23221-1-624 hdisk5 IBM 2145 100.00GiB volume-ora_asm_data-25224-2-a3e		lsmpio -q evice	Vendor Id	Product Id	Size	Volume Name
hdisk2 IBM 2145 90.00GiB volume-oraprod2 db-26878-2-30f2 hdisk3 IBM 2145 20.00GiB volume-ora_asm_crs-79637-3-277a->hdiskasmcrs3 hdisk4 IBM 2145 50.00GiB volume-ora_asm_redo-23221-1-624 hdisk5 IBM 2145 100.00GiB volume-ora_asm_data-25224-2-a3e	ho	disk0	IBM	2145	25.00GiB	volume-oraprod-2-d3c4b8d0-00007
ndisk3 IBM 2145 20.00GiB volume-ora_asm_crs-79637-3-277a>hdiskasmcrs3 hdisk4 IBM 2145 50.00GiB volume-ora_asm_redo-23221-1-624 hdisk5 IBM 2145 100.00GiB volume-ora_asm_data-25224-2-a3e	ho	disk1	IBM	2145	90.00GiB	volume-oraprod2 db-26878-1-5455
hdisk4 IBM 2145 50.00GiB volume-ora_asm_redo-23221-1-624 hdisk5 IBM 2145 100.00GiB volume-ora_asm_data-25224-2-a3e	ho	disk2	IBM	2145	90.00GiB	volume-oraprod2 db-26878-2-30f2
hdisk5 IBM 2145 100.00GiB volume-ora_asm_data-25224-2-a3e	ho	disk3	IBM	2145	20.00GiB	volume-ora asm crs-79637-3-277a>hdiskasmcrs3
	ho	disk4	IBM	2145	50.00GiB	volume-ora_asm_redo-23221-1-624
1 1 1 6 777 0145 00 000 7 1 70 00 0 0 0 1 1 1	ho	disk5	IBM	2145	100.00GiB	volume-ora asm data-25224-2-a3e
hdiskb IBM 2145 20.00GiB volume-ora asm crs-/963/-2-/0e3>hdiskasmcrs2	ho	disk6	IBM	2145	20.00GiB	<pre>volume-ora asm crs-79637-2-70e3>hdiskasmcrs2</pre>
hdisk7 IBM 2145 50.00GiB volume-ora asm redo-23221-2-188	ho	disk7	IBM	2145	50.00GiB	volume-ora asm redo-23221-2-188
hdisk8 IBM 2145 100.00GiB volume-ora asm data-25224-1-9ac	ho	disk8	IBM	2145	100.00GiB	volume-ora asm data-25224-1-9ac
hdisk9 IBM 2145 80.00GiB volume-ora asm mgmt-5ae24f49-56	ho	disk9	IBM	2145	80.00GiB	volume-ora asm mgmt-5ae24f49-56
hdisk10 IBM 2145 20.00GiB volume-ora_asm_crs-79637-1-a953>hdiskasmcrs1	ho	disk10	IBM	2145	20.00GiB	volume-ora_asm_crs-79637-1-a953>hdiskasmcrs1

g) The hdisk name for a specific volume should be same across all RAC nodes. Use 'rendev' command to make the three CRS disk names the same on both nodes.

Commands ran on oraprod-1

```
hdiskasmcrs3
                 TBM
                            2145
                                       20.00GiB volume-ora asm crs-79637-3-277a
Commands ran on oraprod-2
# rendev -l hdisk10 -n hdiskasmcrs1
hdiskasmcrs1
# rendev -l hdisk6 -n hdiskasmcrs2
hdiskasmcrs2
# rendev -1 hdisk3 -n hdiskasmcrs3
hdiskasmcrs3
# lsmpio -q | grep crs
hdiskasmcrs1
                TBM
                            2145
                                       20.00GiB volume-ora asm crs-79637-1-a953
hdiskasmcrs2
                 IBM
                            2145
                                       20.00GiB volume-ora asm crs-79637-2-70e3
hdiskasmcrs3
                            2145
                                       20.00GiB volume-ora asm crs-79637-3-277a
```

h) Rename all Oracle ASM shared disks on both nodes so that they match. After renaming the shared disks on LPAR oraprod-1, execute the 'lsmpio -q' command to verify.

```
# lsmpio -q
Device
                Vendor Id Product Id
                                           Size
                                                     Volume Name
hdisk0
                TBM
                          2145
                                             25.00GiB volume-oraprod-1-9caf4cc8-00007
                                            90.00GiB volume-oraprod1 db-29231-1-b0ea
                          2145
hdisk1
                TBM
                          2145
                                            90.00GiB volume-oraprod1 db-29231-2-0688
                          2145
hdiskasmcrs1
                                             20.00GiB volume-ora asm crs-79637-1-a953
               TBM
hdiskasmcrs2
                IBM
                          2145
                                            20.00GiB volume-ora asm crs-79637-2-70e3
                          2145
                                            20.00GiB volume-ora_asm_crs-79637-3-277a
hdiskasmcrs3
               TBM
hdiskasmdata1
               IBM
                          2145
                                          100.00GiB volume-ora asm data-25224-1-9ac
hdiskasmdata2
                IBM
                          2145
                                          100.00GiB volume-ora_asm_data-25224-2-a3e
hdiskasmmgmt1
                IBM
                          2145
                                            80.00GiB volume-ora asm mgmt-5ae24f49-56
hdiskasmredo1
               IBM
                          2145
                                            50.00GiB volume-ora asm redo-23221-1-624
hdiskasmredo2
               TBM
                          2145
                                            50.00GiB volume-ora_asm_redo-23221-2-188
```

Validate network connectivity

To enable communication over newly created subnets for LPARs created in different physical systems, a support ticket must be created for configuring the internal routing. However, LPARs created in the same physical system can communicate over new subnets without a support ticket. If using cloud connection subnets, internal routing is automatically configured without the need for a support ticket. Note that issues with HAIP have been observed with cloud connection subnets when RAC LPARs are created in different physical systems, which is explained in detail in issue #3 of the "Issues and Solution" section of this document.

For more information on creating the support ticket, refer to the following:

- IBM Cloud support on ibm.com
- Getting help and support on ibm.com

Following is the sample template for creating the support ticket.

```
Subject: "<Data_Center>" - Configure internal Routing for 3 subnets

Datacenter: Dallas 12 - all communication local to that DC
Service name: Power Systems Virtual Server-DAL12-MEGASCALE

Please configure internal routing for following 3 private subnets (ora_pub_172_40_10, ora_prv1_10_80_10, ora_prv2_10_90_10) and provide subnet name and vlan details
```

SubnetName	VLAN ID	CIDR	IP range	Gateway	DNS
ora_pub_172_40_10	3377	172.40.10.0/24	172.40.10.2 - 172.40.10.240	172.40.10.1	NA
ora_prv1_10_80_10	3378	10.80.10.0/28	10.80.10.2 - 10.80.10.14	10.80.10.1	NA
ora_prv2_10_90_10	3388	10.90.10.0/28	10.90.10.2 - 10.90.10.14	10.90.10.1	NA

To ensure that the Oracle grid software works properly, it is necessary that the Oracle public and private network interfaces have consistent names across all nodes based on their role. The 'rendev' command can be utilized to rename network interfaces.

The following example depicts the usage of command 'rendev' to rename interface en1 to interface en10.

```
rendev -1 <current_name> -n <new_name>
For example, if you want to change en1 to en10, run below commands:
# ifconfig en1 down detach
# rendev -1 ent1 -n ent10
# rendev -1 en1 -n en10
# ifconfig en10 up
```

It is recommended to use en0 as the oracle RAC public interface and en1, en2(, en3) as Oracle RAC private interconnect interfaces. Any other interfaces should be named as enX where X > 2 (3).

Following is the output of 'ifconfig -a' on both nodes, where en0 is used for Oracle RAC public and en2 and en3 are used for Oracle RAC private interconnects. It is recommended to use jumbo frames for RAC interconnect interfaces. By default, jumbo frames are enabled on Power Systems Virtual Server network interfaces, to verify use ping -s 8200 < remote server on interconnect interface>' command.

From node oraprod-1

```
# ifconfig -a
en0:
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet 172.40.10.2 netmask 0xffffff00 broadcast 172.40.10.255
        tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet 10.80.10.9 netmask 0xfffffff0 broadcast 10.80.10.15
         tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet 10.90.10.11 netmask 0xfffffff0 broadcast 10.90.10.15
         tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
       inet6 fe80::480:1ff:fe6d:5d2a/64
         tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
```

```
sit0: flags=8100041<UP, RUNNING, LINKO>
        inet6 ::/96
100:
flags=e08084b,c0<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,LARGESEND,
CHAIN>
        inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
        inet6 ::1%1/128
        tcp sendspace 131072 tcp recvspace 131072 rfc1323 1
From node oraprod-2
# ifconfig -a
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE) , LARGESEND, CHAIN>
        inet 172.40.10.131 netmask 0xffffff00 broadcast 172.40.10.255
        tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet 10.80.10.8 netmask 0xfffffff0 broadcast 10.80.10.15
         tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
en2:
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet 10.90.10.12 netmask 0xfffffff0 broadcast 10.90.10.15
         tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
en3:
flags=1e084863,81cc0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHEC
KSUM OFFLOAD (ACTIVE), LARGESEND, CHAIN>
        inet6 fe80::6cc6:a9ff:fee4:8633/64
        tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
sit0: flags=8100041<UP,RUNNING,LINK0>
        inet6 ::/96
100:
flags=e08084b,c0<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,LARGESEND,
CHAIN>
        inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
        inet6 ::1%1/128
        tcp_sendspace 131072 tcp_recvspace 131072 rfc1323 1
Validating RAC interconnect interfaces for large packets transmission
From oraprod-1 verifying the ping of oraprod-2 RAC interconnect IP addresses
# ping -s 8200 10.80.10.8
PING 10.80.10.8 (10.80.10.8): 8200 data bytes
8208 bytes from 10.80.10.8: icmp seq=0 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=1 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=2 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=3 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=4 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=5 ttl=255 time=0 ms
8208 bytes from 10.80.10.8: icmp seq=6 ttl=255 time=0 ms
--- 10.80.10.8 ping statistics ---
7 packets transmitted, 7 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
# ping -s 8200 10.90.10.12
PING 10.90.10.12 (10.90.10.12): 8200 data bytes
8208 bytes from 10.90.10.12: icmp seq=0 ttl=255 time=0 ms
8208 bytes from 10.90.10.12: icmp seq=1 ttl=255 time=0 ms
```

```
8208 bytes from 10.90.10.12: icmp_seq=2 ttl=255 time=0 ms 8208 bytes from 10.90.10.12: icmp_seq=3 ttl=255 time=0 ms 8208 bytes from 10.90.10.12: icmp_seq=4 ttl=255 time=0 ms 8208 bytes from 10.90.10.12: icmp_seq=5 ttl=255 time=0 ms ^C --- 10.90.10.12 ping statistics --- 6 packets transmitted, 6 packets received, 0% packet loss round-trip min/avg/max = 0/0/0 ms
```

Oracle RAC implementation

This section covers installation of Oracle grid infrastructure software at 19.17 level on the two LPARs.

Refer to <u>Oracle installation guide</u> for information on hardware and software requirements for Oracle grid 19c installation.

Operating system readiness

To prepare for the installation, it is necessary to perform the same operating system prerequisite tasks that are identical to those required for on-premises RAC deployment. These tasks must be performed on both RAC nodes, oraprod-1 and oraprod-2.

```
+ Change the value for maxuproc parameter, increase /tmp size and change the limit values
# chdev -1 sys0 -a maxuproc="16384"
# chsec -f /etc/security/limits -s "default" -a fsize=-1 -a core=-1 -a cpu=-1 -a data=-1
-a rss=-1 -a stack=-1 -a nofiles=-1
# chfs -a size=+5G /tmp
+ Set I/O completion ports to "Available" state
# mkdev -l iocp0
# chdev -l iocp0 -P -a autoconfig='available'
# lsdev |grep iocp
+ Create user and groups for oracle grid installation. This demo utilizes a simplified
role separation between grid and oracle users. Please review the Oracle installation
documentation for best practices of a production deployment.
# mkgroup id=300 adms=root oinstall
# mkgroup id=400 adms=root dba
# mkuser id=300 pgrp=oinstall groups="oinstall,dba" grid
+ Set password for grid user and change the permissions
# passwd grid
# chuser capabilities=CAP_NUMA_ATTACH,CAP_BYPASS_RAC_VMM,CAP_PROPAGATE grid
# chuser capabilities=CAP NUMA ATTACH, CAP BYPASS RAC VMM, CAP PROPAGATE root
+ Create filesystem for oracle grid software on the two 90GB hdisks
# mkvg -S -s 16 -y oravg hdisk1 hdisk2
# mklv -ex -y oralv -t jfs2 oravg 150G
# crfs -v jfs2 -A yes -d oralv -m /u01
# mount /u01
+ Create directories for staging the Oracle grid software, where GRID HOME=/u01/19c/grid
and ORACLE BASE=/u01/base
# mkdir -p /u01/19c/grid
# mkdir /u01/base
# mkdir /u01/app
# chown -R grid:oinstall /u01
# chmod -R 775 /u01
```

```
+ Enable Berkely packets
# cd /dev
# rm bpf*
# tcpdump -D
# ls -l /dev/bpf*
+ Network parameter setting
# no -p -o sb max=4194304
# no -p -o udp sendspace=65536
# no -p -o udp_recvspace=655360
# no -p -o tcp sendspace=262144
# no -p -o tcp recvspace=262144
# no -rK -o ipqmaxlen=512
+ Oracle installation requires swap space >16GB. We have created new swap space on oravg
volume group and oravg having "PP Size" as 16M (lsvg -L oravg).
# mkps -a -n -s4 oravg
# chlv -x 1024 paging00
# chps -s '1020' paging00
# swap -1
                  maj,min total 47, 3 16384MB 16383MB
device
                                                     free
/dev/paging00
/dev/hd6
                       10,
                                   512MB
                                                499MB
Note: If you want to increase the default swap device (hd6) which is part of rootyg, refer
to Appendix.
+ Update RAC node names in /etc/hosts file on both LPARs
# RAC Public (en0)
       172.40.10.2
                    oraprod-1
       172.40.10.131 oraprod-2
# RAC Private #1 (en1)
   10.80.10.9 oraprod1-priv1
   10.80.10.8 oraprod2-priv1
# RAC Private #2 (en2)
   10.90.10.11 oraprod1-priv2
        10.90.10.12 oraprod2-priv2
+ Update /etc/netsvc.conf file on both LPARs
hosts = local , bind
+ Install filesets
# cd /usr/sys/inst.images/installp/ppc
# installp -aXYgd . bos.net.tcp.bind
# installp -aXYgd . bos.net.tcp.bind_utils
# installp -aXYgd . xlfrte.aix61
+ Change below OS parameters
# vmo -r -o vmm klock mode=2
# schedo -r -o vpm_xvcpus=2
```

Note: As per Oracle's best practices, role separation is recommended between users with access to GRID_HOME (ASM) and Oracle DB users with access to ORACLE_HOME (DB). However, in this demo, we did not fully implement role separation. For production deployments, please refer to the installation documentation from Oracle for the recommended groups and users to be implemented for recommended role separation.

To prepare for the installation, ensure that the local and shared disks reserve policy is set to 'no_reserve' if not already set to that value. For shared disks that will be used for ASM, change the raw hdisk ownership and permissions.

Note that all hdisk used for ASM disk groups were named 'hdiskasmXXX', so we can easily change the properties for just those disks using the for loop below.

```
# lsattr -El hdiskasmcrs1|grep reserve_policy
reserve_policy single_path Reserve Policy True+
# cd /dev
# for i in hdiskasm*
do
    chdev -l $i -a reserve_policy=no_reserve
    chown grid:dba /dev/r$i
    chmod 660 /dev/r$i
done
# lsattr -El hdiskasmcrs1|grep reserve_policy
reserve_policy no_reserve Reserve Policy True+
```

Perform the changes mentioned earlier on all ASM disks present on both nodes.

DNS resolution check

To install RAC, you need to have SCAN and Node-VIPs. You can host a DNS server that provides these SCAN and Node-VIPs either within Power Systems Virtual Server or outside of it. If the DNS server is outside of Power Systems Virtual Server, then you need to establish a Cloud Connection to enable RAC VMs to communicate with the DNS server.

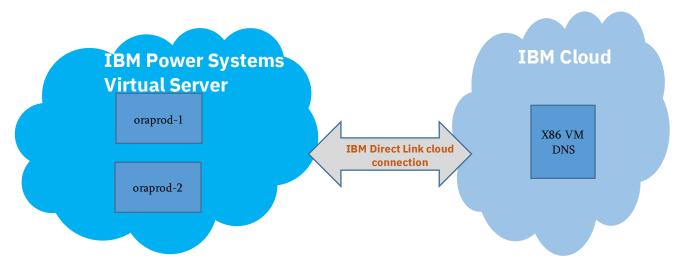


Figure 22. Power Systems Virtual Server connection to IBM cloud.

The x86 VM hosted on IBM cloud classic infrastructure acts as the DNS server in our setup, and the Oracle RAC nodes oraprod-1 and oraprod-2 communicate with it using the IBM Direct Link Cloud Connection service. To ensure proper name resolution, update the file '/etc/resolv.conf' on both nodes with the nameserver details and verify the resolution of the scan name and node VIP name.

```
# cat /etc/resolv.conf
nameserver 10.61.69.12
search solutiontest.cloud.ibm.com
+ Verify SCAN name resolution
# nslookup orac-scan
Server: 10.61.69.12
Address:
               10.61.69.12#53
Name: orac-scan.solutiontest.cloud.ibm.com
Address: 172.40.10.245
Name: orac-scan.solutiontest.cloud.ibm.com
Address: 172.40.10.243
Name: orac-scan.solutiontest.cloud.ibm.com
Address: 172.40.10.244
+ Verify node vips resolution
# nslookup oraprod1-vip
               10.61.69.12
Server:
Address:
              10.61.69.12#53
Name: oraprod1-vip.solutiontest.cloud.ibm.com
Address: 172.40.10.241
# nslookup oraprod2-vip
Server: 10.61.69.12
Address: 10.61.69.12#53
Name: oraprod2-vip.solutiontest.cloud.ibm.com
Address: 172.40.10.242
```

We can also configure DNS on a separate AIX LPAR in our workspace. Refer to Appendix for configuring DNS on AIX Power Systems Virtual Server LPAR.

Install and configure Oracle Grid Infrastructure

To install and configure Oracle Grid Infrastructure, perform the following steps:

- Download the Oracle Grid Infrastructure (GI) software from the <u>Oracle Technology Network</u> (OTN) or <u>Oracle Software Delivery Cloud site</u>.
- Push the downloaded software to one of the RAC nodes using the bridge server, which can be
 another AIX LPAR with a public IP or the Direct Link service for a secure connection between onpremises network or IBM cloud to Power Systems Virtual Server.

Note that it is the customer's responsibility to adhere to the Oracle License and usage requirements. Additionally, in this demo, we apply the Release Update (19.17) patch during the installation.

1. On node 'oraprod-1', extract grid infrastructure 19.3 installation file to '/u01/19c/grid' which acts as GRID_HOME and update OPatch to the latest version.

Refer to <u>How To Download And Install The Latest OPatch(6880880) Version (Doc ID 274526.1)</u> for more information.

```
unzip AIX.PPC64_193000_grid_home.zip -d /u01/19c/grid/
```

2. Download the latest Release Update patch from My Oracle Support (MOS) and extract it on oraprod-1.

```
mkdir /u01/RU1917/
unzip p34416665 190000 AIX64-5L.zip -d /u01/RU1917/
```

3. Setup a password less SSH connectivity between the two RAC nodes for grid installation user.

```
/u01/19c/grid/oui/prov/resources/scripts/sshUserSetup.sh -advanced -noPromptPassphrase -user grid -hosts "oraprod-1 oraprod-2"
```

4. Run the 'runcluvfy.sh' script and verify that no errors are reported.

```
/u01/19c/grid/runcluvfy.sh stage -pre crsinst -n oraprod-1,oraprod-2 -verbose -
method root
```

Proceed with installing the Oracle Grid Infrastructure either using the silent option via response file or the GUI once runcluvfy.sh does not report any errors.

5. Create / modify the response file with necessary cluster details and then install the grid software using the silent option. In this installation we patch the GRID_HOME to the 19.17 RU prior to configuring the GRID software stack using the '-applyRU' option. Use "-ignorePrereqFailure" option if you want to ignore any precheck failures during installation.

```
/u01/19c/grid/gridSetup.sh -applyRU /u01/RU1917/34416665 -ignorePrereqFailure - silent -responseFile /u01/19c/grid/install/response/editgridsetup.rsp
```

For the GUI option, install vncserver on RAC node oraprod-1 using 'dnf' or YUM - "dnf install tightvnc-server". In case you do not have access to external network, obtain vnc package manually from <u>AIX-Toolbox</u>.

To utilize the graphical interface when the public network was enabled during LPAR creation, an SSH tunnel via putty can be used. It is important to note that direct VNC traffic on the 59xx port is not allowed due to the firewall between the Internet and the Power Systems Virtual Server LPARs. Another option is to configure vnc on the bridge or jumpstart server and use the 'xhost' command to export the X11 display to the bridge server.

The following screen captures depicts Oracle 19c grid software installation via the GUI interface and it should be noted that not all the installation screens were included in this demonstration.

1. Change into the directory where the grid infrastructure was extracted to (\$GRID_HOME) and invoke "./gridSetup.sh" script as user grid.

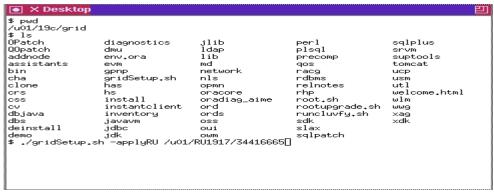


Figure 23. Install / patch grid software.

- 2. Wait for the RU patch to be applied, it may take several minutes.

 Select Configure Oracle Grid Infrastructure for a New cluster→ Configure an Oracle Standalone Cluster.
- 3. On the 'Grid Plug and Play Information' page enter the cluster name as 'oraprod-cluster', scan name as 'orac-scan' and scan port as '1521'.
- 4. On the 'Cluster Node Information' page, add the nodes (oraprod-1 & oraprod-2) and their corresponding node VIPs (oraprod1-vip & oraprod2-vip) to be part of the cluster. Select Public and Private networks for the Oracle RAC cluster. Subnet 172.40.10.X is used as oracle RAC public and 10.80.10.X, 10.90.10.X subnets are used as oracle RAC private interconnect. Any other interfaces / subnets must be marked as "Do Not Use" as shown in Figure 24.

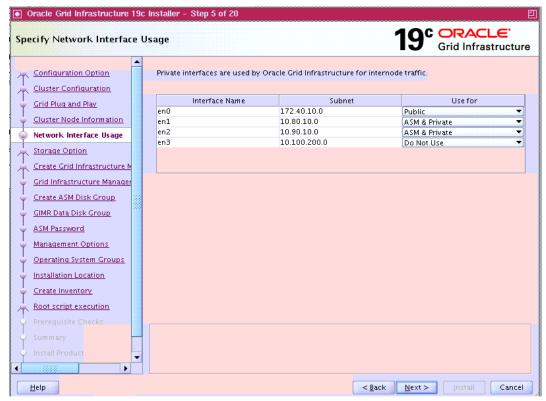


Figure 24. Select public and private networks.

5. Specify the disk-group name for OCR and Voting and select the corresponding shared disks '/dev/rhdiskasmcrs[1-3]'. Use "CRSDG" disk-group for storing OCR and voting disk data. Ensure that External Redundancy is selected for CRSDG diskgroup as the IBM FlashSystem providing the SAN storage is highly available as ASM mirroring is not required in this configuration.

In Power Systems Virtual Server, you can implement an extended configuration with two sets of shared disks supported by different backend FlashSystems, as two ASM failure groups, and utilize ASM Normal redundancy to mirror the data. This provides additional protection against a potential IBM FlashSystem failure, but requires double the amount of SAN storage. This configuration is not typically used in Power Systems Virtual Server.

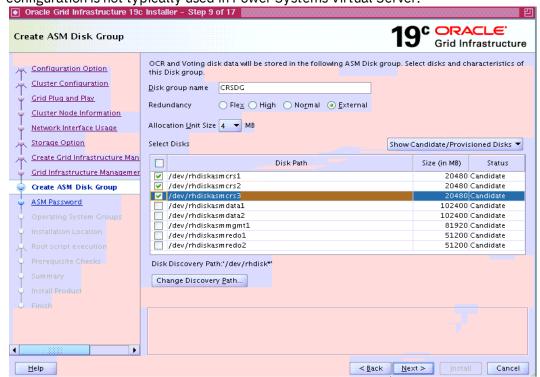


Figure 25. Create OCR and Vote Disk group.

- 6. On the 'Operating System Groups' page, select 'oinstall' for OSDBA group and 'dba' for OSASM group.
 - Specify ORACLE_BASE as "/u01/base" and inventory directory as '/u01/app/oraInventory'. Ensure that all necessary prechecks are passed before starting the installation.
 - Click install and execute 'root.sh' and 'orainstRoot.sh' on all nodes when prompted.

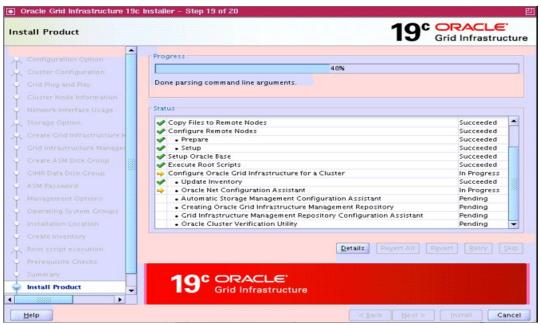


Figure 26. Grid Installation in Progress.

7. Wait for the installation to finish, then use the following commands to verify cluster health. From first node 'oraprod-1'

Cluster Resource ora.asm 1 ora.cluster_int 1 ora.crf 1 ora.crsd 1 ora.cssd 1	es ONLINE erconnec ONLINE ONLINE	ONLINE	oraprod-1 oraprod-1	Started,STABLE
ora.asm 1 ora.cluster_int 1 ora.crf 1 ora.crsd 1 ora.cssd 1	ONLINE erconned ONLINE ONLINE	ONLINE ct.haip ONLINE	oraprod-1 oraprod-1	Started, STABLE
ora.cluster_int 1 ora.crf 1 ora.crsd 1 ora.cssd 1	erconnec ONLINE ONLINE	ct.haip ONLINE	oraprod-1	STABLE
1 ora.crf 1 ora.crsd 1 ora.cssd 1	ONLINE ONLINE	ONLINE	-	
ora.crf 1 ora.crsd 1 ora.cssd 1	ONLINE		-	
1 ora.crsd 1 ora.cssd 1		ONLINE	oraprod-1	
ora.crsd 1 ora.cssd		ONLINE	oraprod-1	
1 ora.cssd	ONLINE			STABLE
ora.cssd	ONLINE			
1		ONLINE	oraprod-1	STABLE
_				
4 1 4	ONLINE	ONLINE	oraprod-1	STABLE
ora.cssdmonitor				
1	ONLINE	ONLINE	oraprod-1	STABLE
ora.ctssd				
	ONLINE	ONLINE	oraprod-1	ACTIVE: 0, STABLE
ora.diskmon				
	OFFLINE	OFFLINE		STABLE
ora.drivers.acf				
	ONLINE	ONLINE	oraprod-1	STABLE
ora.evmd				
	ONLINE	ONLINE	oraprod-1	STABLE
ora.gipcd				
	ONLINE	ONLINE	oraprod-1	STABLE
ora.gpnpd		0117 7117	1 4	0
	ONLINE	ONLINE	oraprod-1	STABLE
ora.mdnsd	ONIT TAIL	ONIT TAID		CHARLE
	ONLINE	ONLINE	oraprod-1	STABLE
ora.storage	ONE THE	ONT THE		CEARLE
1	ONLINE	ONLINE	oraprod-1	STABLE

From second node 'oraprod-2'

/u01/19c/grid/bin/crsctl stat res -t -init

Name	Target	State	Server	State details			
Cluster Resources							
ora.asm							
1	ONLINE	ONLINE	oraprod-2	STABLE			
ora.cluster_in	terconne	ct.haip					
1	ONLINE	ONLINE	oraprod-2	STABLE			
ora.crf							
1	ONLINE	ONLINE	oraprod-2	STABLE			
ora.crsd							
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.cssd							
		ONLINE	oraprod-2	STABLE			
ora.cssdmonito							
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.ctssd	0111 T110	ONT THE		ACETTE A CEADIN			
	ONLINE	ONLINE	oraprod-2	ACTIVE:0,STABLE			
ora.diskmon 1	OPPLINE	OPPLINE		STABLE			
ora.drivers.ac		OFFLINE		SIABLE			
		ONLINE	oranrod-2	STABLE			
ora.evmd	ONLINE	ONLINE	Olapiou-2	SIRBLE			
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.gipcd	01121112	01121112	oraproa r	5111522			
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.gpnpd		****					
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.mdnsd			1				
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.storage							
	ONLINE	ONLINE	oraprod-2	STABLE			

To check the status of the CRS controlled resources from any node

/u01/19c/grid/bin/crsctl stat res -t

			Server	State details			
Local Resources							
ora.LISTENE							
	ONLINE	ONLINE		STABLE			
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.helper							
	OFFLINE	OFFLINE	oraprod-1	STABLE			
	OFFLINE	OFFLINE	oraprod-2	IDLE, STABLE			
ora.net1.net	twork						
	ONLINE	ONLINE	oraprod-1	STABLE			
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.ons							
	ONLINE	ONLINE	oraprod-1	STABLE			
	ONLINE	ONLINE	oraprod-2	STABLE			
ora.proxy_a							
			oraprod-1	STABLE			
			oraprod-2	STABLE			
Cluster Reso	ources						
ora.ASMNET1							
1			oraprod-1	STABLE			
2	ONLINE	ONLINE	oraprod-2	STABLE			
ora.ASMNET2	LSNR ASM.lsi	nr(ora.asmo	roup)				
1			oraprod-1	STABLE			
2.			oraprod-2	STABLE			

ora.LISTENER_S						
1		ONLINE	oraprod-2	STABLE		
ora.LISTENER_S						
1	ONLINE		oraprod-1	STABLE		
ora.LISTENER_S						
1	ONLINE		oraprod-1	STABLE		
ora.MGMT.dg(or	_	_				
1	ONLINE		oraprod-1	STABLE		
2	ONLINE	ONLINE	oraprod-2	STABLE		
ora.MGMTLSNR						
	ONLINE	ONLINE	oraprod-1	169.254.34.204 10.80.10.9		
10.90.10.11,						
STABLE						
ora.OCRVOT.dg(ora.asmg	roup)				
1	ONLINE	ONLINE	oraprod-1	STABLE		
2	ONLINE	ONLINE	oraprod-2	STABLE		
ora.asm(ora.as	mgroup)					
1	ONLINE	ONLINE	oraprod-1	Started,STABLE		
2	ONLINE		oraprod-2	Started,STABLE		
ora.asmnet1.asmnetwork(ora.asmgroup)						
1	ONLINE	ONLINE	oraprod-1	STABLE		
2	ONLINE		oraprod-2	STABLE		
ora.asmnet2.asmnetwork(ora.asmgroup)						
1	ONLINE	ONLINE	oraprod-1	STABLE		
2	ONLINE	ONLINE	oraprod-2	STABLE		
ora.cvu						
1	ONLINE	ONLINE	oraprod-1	STABLE		
ora.mgmtdb						
1	ONLINE	ONLINE	oraprod-1	Open, STABLE		
ora.oraprod-1.	vip					
1	ONLINE	ONLINE	oraprod-1	STABLE		
ora.oraprod-2.	vip					
1	ONLINE	ONLINE	oraprod-2	STABLE		
ora.qosmserver						
1	ONLINE	ONLINE	oraprod-2	STABLE		
ora.rhpserver						
1	OFFLINE	OFFLINE		STABLE		
ora.scan1.vip						
1	ONLINE	ONLINE	oraprod-2	STABLE		
ora.scan2.vip			-			
1	ONLINE	ONLINE	oraprod-1	STABLE		
ora.scan3.vip						
1	ONLINE	ONLINE	oraprod-1	STABLE		
			-			

Issues and solutions

Issue 1: Failed Operating system checks.

During precheck on AIX 73 TL0 SP1, some of the OS checks may fail even after providing the root credentials. This is a known issue that has been addressed in APAR IJ38518, and a fix is included in SP2. If you encounter the below check failures even after applying the fix, you can ignore the checks and continue with the installation.

Refer to <u>IJ38518: AIX 7.3 CHANGED SOME PERFORMANCE TUNING COMMANDS' DEFAULT OUTPUT</u> on ibm.com for more information on this issue.

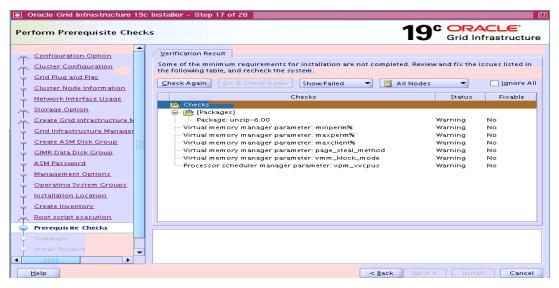


Figure 27. Grid prechecks.

Issue 2: ASMNET resource unable to start.

After root.sh execution you may observe that 'ora.asmnetX.asmnetwork' resource is in 'ONLINE OFFLINE' state as shown.

```
ora.asm(ora.asmgroup)
1 ONLINE ONLINE rac93 Started, STABLE
2 ONLINE OFFLINE STABLE
ora.asmnet1.asmnetwork(ora.asmgroup)
1 ONLINE OFFLINE STABLE
2 ONLINE OFFLINE STABLE
ora.asmnet2.asmnetwork(ora.asmgroup)
1 ONLINE OFFLINE STABLE
2 ONLINE OFFLINE STABLE
The file crsd orarootagent root.trc shows:
_____
2022-10-31 13:02:38.420 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] ifname=en0
2022-10-31 13:02:38.420 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check]
subnetmask=255.255.255.0
2022-10-31 13:02:38.420 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check]
subnetnumber=172.30.1.0
2022-10-31 13:02:38.420 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] primary
IpAddress=172.30.1.125
2022-10-31 13:02:38.458 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] (null) category:
-1, operation: failed system call, loc: ioctl, OS error: 68, other:
2022-10-31 13:02:38.458 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] OsdsException
getting NetMask
2022-10-31 13:02:38.458 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] Not an IPV4
address
2022-10-31 13:02:38.458 :CLSDYNAM:3600: [ora.asmnet1.asmnetwork] {0:3:6} [check] (null) category:
-1, operation: failed system call, loc: inet aton, OS error: 68, other:
```

The following is an example of the 'ifconfig' command output of a problematic node where the IPv6 interface is listed as en1, en2 is used as the RAC public network, and en3 and 4 interfaces are used as the RAC private interconnect.

```
# ifconfig -a
   flags=1e084863,814c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM
   OFFLOAD (ACTIVE), LARGESEND, CHAIN>
           inet 192.168.193.164 netmask 0xfffffff8 broadcast 192.168.193.167
             tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
   flags=1e084863,814c0<up,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM
   OFFLOAD (ACTIVE), LARGESEND, CHAIN>
             tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
   en2:
   flags=1e084863,816c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM
   OFFLOAD (ACTIVE), LARGESEND, CHAIN, MONITOR>
           inet 172.40.10.2 netmask 0xffffff00 broadcast 172.40.10.255
            tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1
   en3:
   flags=1e084863,816c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM
   _OFFLOAD(ACTIVE), LARGESEND, CHAIN, MONITOR>
            inet 10.80.10.9 netmask 0xffffff00 broadcast 10.80.10.255
             tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
   flags=1e084863,816c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM
   OFFLOAD (ACTIVE), LARGESEND, CHAIN, MONITOR>
            inet 10.90.10.11 netmask 0xffffff00 broadcast 10.90.10.255
             tcp sendspace 262144 tcp recvspace 262144 rfc1323 1
   sit0: flags=8100041<UP, RUNNING, LINK0>
            inet6 ::192.168.193.164/96
   100:
   flags=e08084b, c0<UP, BROADCAST, LOOPBACK, RUNNING, SIMPLEX, MULTICAST, GROUPRT, 64BIT, LARGESEND, CHAI
            inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
            inet6 ::1%1/128
        tcp sendspace 131072 tcp recvspace 131072 rfc1323 1
```

To resolve the issue of IPv6 causing problems when listed at the beginning or between Oracle RAC interfaces, there are several possible workarounds.

- Use the 'rendev' tool to rename the IPV6 interface to the last interface (for example, rename it to en10).
- Create a dummy IPV4 address on the existing IPV6 interface.
- Bring down or delete the IPV6 interface.

Oracle has created Bug 34781773 to address this issue. Refer to oracle support $\underline{\text{Doc ID } 2942411.1}$ and apply the patch #34781773.

Issue 3: Inability to Reach HAIP Between Oracle RAC Nodes

After executing the root.sh scripts on LPARs created on different physical servers in Power Systems Virtual Server with cloud connection subnets for Oracle RAC private interconnects, HAIPs were found to be unreachable between RAC nodes. The cloud connection option eliminates the need for creating support tickets for network connectivity between nodes. However, the current automation scripts in Power Systems Virtual Server do not establish full connectivity required by HAIP at this time. The Power Systems Virtual Server team is updating the automation scripts to address the issue. In the meantime, users can create a support case to resolve the issue.

For more information on cloud connection refer to Managing IBM Cloud connections.

Conclusion

Power Systems™ Virtual Server is a Power Systems enterprise Infrastructure as a Service (IaaS) offering providing the same hardware and software stack as utilized in an on-premises customer data center. In this paper we demonstrated the simple and efficient creation and management of even quite complex environments like an Oracle Real Application cluster deployment in Power Systems Virtual Server.

Power Systems™ Virtual Server provides an agile environment where resources can be quickly scaled up and down as needed and costs are based on consumption. Additional advanced features like capturing of VMs for easy duplication, backups to Cloud Object Storage or storage level replication to a Power Systems Virtual Server data center in a different region were not covered in this paper but are available as well.

Appendix

A) Extend rootvg by adding new disk for increasing the swap device(hd6) space

By default, the swap device hd6 is configured on rootvg and rootvg LUN size is 25G. To increase the swap space(hd6) using chps, we need to extend the rootvg. The rootvg has PP size as 32MB (lsvg rootvg|grep 'PP SIZE'). Here hdiskX is the newly added disk.

```
chvg -t 4 rootvg
extendvg -f rootvg hdiskX
chlv -x 1024 hd6
chps -s '500' hd6
```

B) DNS Setup on AIX LPAR

LPAR oracln created for configuring DNS.

For more information on DNS configuration on AIX refer to <u>Configuring domain name servers</u> - <u>BIND version 9.4</u>

• Create and update the /etc/named.conf file.

```
# cat /etc/named.conf
server 172.40.10.205 {
transfer-format many-answers;
logging{
 channel simple_log {
    file "/var/log/named/bind.log" versions 3 size 5m;
   severity warning;
   print-time yes;
   print-severity yes;
   print-category yes;
 category default{
   simple log;
 };
};
zone "example.cloud.ibm.com" in {
type master:
file "/etc/named.example.data";
zone "10.40.172.in-addr.arpa" in {
type master;
```

```
file "/etc/named.example.rev";
};
zone "0.0.127.in-addr.arpa" in {
type master;
file "/etc/named.local";
};
zone "." in {
type hint;
file "/etc/named.root.hints";
```

Create the data file /etc/named.example.data mentioning node VIPs and scan VIPs.

```
# cat /etc/named.example.data
;primary host data file for example.cloud.ibm.com - oracln.example.cloud.ibm.com
0 IN
            SOA
                     oracln.example.cloud.ibm.com.
root.oracln.example.cloud.ibm.com. (
                                      ;serial
                              9
                              3600
                                      ;refresh
                              600
                                      ;retry
                              3600000; expire
                              86400
                                     ;minimum
; name servers for example.cloud.ibm.com
                                NS
                                        oracln.example.cloud.ibm.com
                        TN
                                        172.40.10.205
                        ΙN
                                Α
oracln
localhost
                                        127.0.0.1
                        ΤN
                                Α
loopback
                        ΤN
                                Α
                                        127.0.0.1
; RAC cluster Oracle public IPS, static SCAN and Node VIP names
                                                 172.40.10.2
oraprod-1
                             ΙN
                                        Α
                                                 172.40.10.131
oraprod-2
                             ΙN
                                        Α
oraprod1-vip
                             IN
                                        Α
                                                 172.40.10.241
oraprod2-vip
                             ΤN
                                        Α
                                                 172.40.10.242
orac-scan
                             ΙN
                                        Α
                                                 172.40.10.243
                                                 172.40.10.244
                                        Α
                                                 172.40.10.245
```

• Start the dns daemon named on oracln AIX LPAR.

```
# startsrc -s named
# lssrc -s named
Subsystem Group PID Status
named tcpip 24576224 active
```

On Oracle RAC nodes 'oraprod-1', 'oraprod-2', update the 'resolv.conf' file with nameserver details and verify the scan name and node VIP name resolution.

```
# cat /etc/resolv.conf
nameserver 172.30.1.205
search example.cloud.ibm.com
+ Verify SCAN name resolution
# nslookup orac-scan
Server: 172.30.1.205
Address: 172.30.1.205
Address: 172.30.1.205#53
Name: orac-scan.example.cloud.ibm.com
Address: 172.30.1.243
Name: orac-scan.example.cloud.ibm.com
Address: 172.30.1.244
Name: orac-scan.example.cloud.ibm.com
```

```
Address: 172.30.1.245

+ Verify node vips resolution

# nslookup oraprod1-vip
Server: 172.30.1.205
Address: 172.30.1.205#53

Name: oraprod1-vip.example.cloud.ibm.com
Address: 172.30.1.241

# nslookup oraprod2-vip
Server: 172.30.1.205
Address: 172.30.1.205#53

Name: oraprod2-vip.example.cloud.ibm.com
Address: 172.30.1.242
```

Resources

The following websites can be used as references to complement the information presented in this document:

- AIX with Oracle Database on IBM Power Systems Considerations for Performance and Stability-All Releases
- Power Systems Virtual Servers documentation
- Oracle Grid Infrastructure 19c on AIX
- Oracle DB & RAC 19c on IBM AIX: Tips and Considerations
- IBM Power servers: Engineered for agility
- IBM Publications Center
- IBM Documentation
- IBM Redbooks

About the authors

Bhargavaram Akula is a Technical Consultant with IBM India, Hyderabad. He collaborates with the specialists at the IBM Oracle International Competency Center based in Foster City, and Redwood Shores, California, US, working on Oracle product certifications on IBM Power Systems™ running AIX. He has extensive experience with Oracle Products. You can reach him at bhargaku@in.ibm.com.

Bobichan P John is a Senior Software Engineer at IBM Infrastructure where he is driving Power Systems™ Hybrid Cloud IaaS Offerings' features/technologies validation and usage patterns. Primary areas of expertise are Hybrid Cloud IaaS, PowerVM, PowerSystems management, Solution integration, IBM Application Platform, Middle-ware, and Database products. You can reach him at ibbobicha@in.ibm.com.

Sougata Sarkar is Senior Staff Software Engineer working for the Integrated Software Systems Test Team for 10 years. He is working as the ISST AIX/VIOS lead. His areas of expertise are Shared Storage Pools, Virtual IO Server, PowerVM virtualization concepts like NPIV, vSCSI, Remote Restart, Logical

Partition Mobility, Oracle Database and DB2. He has good knowledge on AIX features like Live Kernel Update. He can be reached at sougsark@in.ibm.com.

Wayne Martin is the IBM Systems Technology Solutions Manager responsible for the technology relationship between IBM and the developers of Oracle Corporation's Database and Fusion Middleware for all IBM server brands. His responsibilities include driving the mutual understanding between IBM and Oracle on technology innovations that will generate benefits for mutual customers, managing the process of getting that technology implemented in products and ensuring that availability of the products to customers is timely. Wayne has held a variety of technical and management roles at IBM that have focused on driving enhancements of ISV software that uses IBM's mainframe, workstation, and scalable parallel products.

Ralf Schmidt-Dannert has over 31 years of experience in IT and currently works as a Principal IT Specialist with the IBM Advanced Technology Group, ISV on Power – Oracle team. He has spent most of his career focused on very large database environments, designing, testing, and troubleshooting solutions for high performance, high availability and near zero data loss disaster recovery. Ralf has helped customers in the financial, telecommunications, utility, retail and manufacturing industries choose appropriate database and infrastructure technologies to meet their business requirements for databases up to a hundred terabytes in size. Most recently, he has been evaluating and implementing technologies to provide Database as a Service to customers running their databases on IBM Power servers - on-prem or in IBM Power Systems Virtual Server infrastructure - off-prem.

© Copyright IBM Corporation 2023 IBM Systems 3039 Cornwallis Road RTP, NC 27709

Produced in the United States of America

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of the Internal Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked items are marked on their first occurrence in the information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the web at "Copyright and trademark information" at https://www.ibm.com/legal/copytrade

Copyright © 2021 Oracle Corporation 500 Oracle Parkway Redwood Shores, CA 94065

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Other product, company or service names may be trademarks or service marks of others.

References in the publication to IBM products or services do not imply that IBM intends to make them available in all countries in the IBM operates.

Please recycle.